Skip to main content
Version: 13.10.0

🧮 Processing setup

Environment

# Navigate to source root directory
cd sound-scape-explorer

# Create virtual environment
python3.10 -m venv venv

# Activate environment
source venv/bin/activate # unix
.\venv\Scripts\activate # windows

# Install processing in dev mode
pip install -e processing

# Edit and run code...

Basic user flows

  1. When user runs sse command, it will trigger the processing.cli:start_processing function
  2. When user selects a menu choice, it will trigger one or more actions from processing.actions

File structure

sound-scape-explorer/processing/
├── processing/ --> Package source
│ ├── actions/ --> Menu choices
│ ├── common/
│ ├── config/
│ ├── digesters/
│ ├── errors/
│ ├── extractors/
│ ├── lib/ --> Legacy code
│ ├── loaders/
│ ├── reducers/
│ ├── storage/
│ ├── utils/
│ ├── cli.py --> User CLI entrypoints
│ └── main.py --> User menu
└── pyproject.toml --> Package configuration
info

Code completion and styling are provided by:

Configure your editor accordingly to improve your development experience.

Custom action examples

refresh_configuration.py

from processing.actions.refresh_configuration import refresh_configuration
from processing.config.Config import Config
from processing.storage.Storage import Storage

config_path = "/path/to/config.xlsx"
storage_path = "/path/to/storage.h5"

config = Config(config_path)
storage = Storage(storage_path)

refresh_configuration(config, storage)

# Import other action or create custom...

display_menu_without_storage.py

from processing.main import main

storage = None
config_path = "/path/to/new_config.xlsx"

main(storage, config_path)

# Interact with console...

load_config_and_print_files.py

from processing.config.Config import Config

config_path = "/path/to/config.xlsx"
config = Config(config_path)

for file in config.files:
print(file) # FileConfig object

load_storage_and_print_files.py

from processing.config.files.FileStorage import FileStorage
from processing.config.settings.SettingsStorage import SettingsStorage
from processing.storage.Storage import Storage

storage_path = "/path/to/storage.h5"
storage = Storage(storage_path)

settings = SettingsStorage.read_from_storage(storage)
files = FileStorage.read_from_storage(storage, settings)

for file in files:
print(file) # FileConfig object
load_storage_extract_and_reduce.py
import numpy as np

from processing.common.TimelineWalker import TimelineWalker
from processing.config.bands.BandConfig import BandConfig
from processing.config.files.FileStorage import FileStorage
from processing.config.integrations.IntegrationConfig import IntegrationConfig
from processing.config.settings.SettingsStorage import SettingsStorage
from processing.config.sites.SiteStorage import SiteStorage
from processing.extractors.VggExtractor import VggExtractor
from processing.reducers.UmapReducer import UmapReducer
from processing.storage.Storage import Storage
from processing.utils.create_timelines import create_timelines

# INFO: This example could gain clarity by:
# - Using consistent setters for objects
# - Providing less arguments to `create_timelines()`
# - Wrap timeline behavior behind simple API

# Reading settings, files and sites from storage
storage_path = "/path/to/storage.h5"
storage = Storage(storage_path)

settings = SettingsStorage.read_from_storage(storage)
files = FileStorage.read_from_storage(storage, settings)
sites = SiteStorage.read_from_storage(storage, settings)

# Creating custom band, integration and extractor
band = BandConfig(0, "human", 20, 20000)
integration = IntegrationConfig(0, "15s", 15)

vgg = VggExtractor()
vgg.index = 0
vgg.expected_sample_rate = 44100

# Creating manual timelines (this section could be simplified greatly)
timelines = create_timelines(
sites=sites,
integrations=[integration],
settings=settings,
storage=storage,
)

tw = TimelineWalker()
tw.storage = storage
tw.bands = [band]
tw.integrations = [integration]
tw.timelines = timelines
tw.extractors = [vgg]

# Getting ready to walk the timeline and yield features
features = []

for (
features_seconds,
labels,
interval_details, # arbitrary server unique slug for storage indexing
interval, # Interval object
band, # BandConfig object
extractor, # ExtractorConfig object
timeline, # current Timeline object
) in tw.walk():
features_aggregated = list(np.mean(features_seconds, axis=0))
features.append(features_aggregated)

# Creating custom reducer
reducer = UmapReducer()
reducer.load(3, None, features)

features_reduced = reducer.calculate()

# Using reduced features...