🧮 Processing setup
Environment
# Navigate to source root directory
cd sound-scape-explorer
# Create virtual environment
python3.10 -m venv venv
# Activate environment
source venv/bin/activate
# Install processing in dev mode
pip install -e processing
# Edit and run code...
Basic user flows
- When user runs
sse
command, it will trigger theprocessing.cli:start_processing
function - When user selects a menu choice, it will trigger one or more actions from
processing.actions
File structure
sound-scape-explorer/processing/
├── processing/ --> Package source
│ ├── actions/ --> Menu choices
│ ├── common/
│ ├── config/
│ ├── digesters/
│ ├── errors/
│ ├── extractors/
│ ├── lib/ --> Legacy code
│ ├── loaders/
│ ├── reducers/
│ ├── storage/
│ ├── utils/
│ ├── cli.py --> User CLI entrypoints
│ └── main.py --> User menu
└── pyproject.toml --> Package configuration
info
Custom action examples
refresh_configuration.py
refresh_configuration.py
from processing.actions.refresh_configuration import refresh_configuration
from processing.config.Config import Config
from processing.storage.Storage import Storage
config_path = "/path/to/config.xlsx"
storage_path = "/path/to/storage.h5"
config = Config(config_path)
storage = Storage(storage_path)
refresh_configuration(config, storage)
# Import other action or create custom...
display_menu_without_storage.py
display_menu_without_storage.py
from processing.main import main
storage = None
config_path = "/path/to/new_config.xlsx"
main(storage, config_path)
# Interact with console...
load_config_and_print_files.py
load_config_and_print_files.py
from processing.config.Config import Config
config_path = "/path/to/config.xlsx"
config = Config(config_path)
for file in config.files:
print(file) # FileConfig object
load_storage_and_print_files.py
load_storage_and_print_files.py
from processing.config.files.FileStorage import FileStorage
from processing.config.settings.SettingsStorage import SettingsStorage
from processing.storage.Storage import Storage
storage_path = "/path/to/storage.h5"
storage = Storage(storage_path)
settings = SettingsStorage.read_from_storage(storage)
files = FileStorage.read_from_storage(storage, settings)
for file in files:
print(file) # FileConfig object
load_storage_extract_and_reduce.py
import numpy as np
from processing.common.TimelineWalker import TimelineWalker
from processing.config.bands.BandConfig import BandConfig
from processing.config.files.FileStorage import FileStorage
from processing.config.integrations.IntegrationConfig import IntegrationConfig
from processing.config.settings.SettingsStorage import SettingsStorage
from processing.config.sites.SiteStorage import SiteStorage
from processing.extractors.VggExtractor import VggExtractor
from processing.reducers.UmapReducer import UmapReducer
from processing.storage.Storage import Storage
from processing.utils.create_timelines import create_timelines
# INFO: This example could gain clarity by:
# - Using consistent setters for objects
# - Providing less arguments to `create_timelines()`
# - Wrap timeline behavior behind simple API
# Reading settings, files and sites from storage
storage_path = "/path/to/storage.h5"
storage = Storage(storage_path)
settings = SettingsStorage.read_from_storage(storage)
files = FileStorage.read_from_storage(storage, settings)
sites = SiteStorage.read_from_storage(storage, settings)
# Creating custom band, integration and extractor
band = BandConfig(0, "human", 20, 20000)
integration = IntegrationConfig(0, "15s", 15)
vgg = VggExtractor()
vgg.index = 0
vgg.expected_sample_rate = 44100
# Creating manual timelines (this section could be simplified greatly)
timelines = create_timelines(
sites=sites,
integrations=[integration],
settings=settings,
storage=storage,
)
tw = TimelineWalker()
tw.storage = storage
tw.bands = [band]
tw.integrations = [integration]
tw.timelines = timelines
tw.extractors = [vgg]
# Getting ready to walk the timeline and yield features
features = []
for (
features_seconds,
labels,
interval_details, # arbitrary server unique slug for storage indexing
interval, # Interval object
band, # BandConfig object
extractor, # ExtractorConfig object
timeline, # current Timeline object
) in tw.walk():
features_aggregated = list(np.mean(features_seconds, axis=0))
features.append(features_aggregated)
# Creating custom reducer
reducer = UmapReducer()
reducer.load(3, None, features)
features_reduced = reducer.calculate()
# Using reduced features...